<var id="lf1hj"></var>
<menuitem id="lf1hj"></menuitem>
<menuitem id="lf1hj"><strike id="lf1hj"></strike></menuitem><menuitem id="lf1hj"></menuitem><var id="lf1hj"><strike id="lf1hj"></strike></var>
<var id="lf1hj"><strike id="lf1hj"></strike></var>
<var id="lf1hj"></var>
<var id="lf1hj"><strike id="lf1hj"><listing id="lf1hj"></listing></strike></var>
<var id="lf1hj"><strike id="lf1hj"></strike></var>
<var id="lf1hj"><dl id="lf1hj"></dl></var>
<var id="lf1hj"></var><var id="lf1hj"><strike id="lf1hj"><listing id="lf1hj"></listing></strike></var>
<menuitem id="lf1hj"><dl id="lf1hj"><progress id="lf1hj"></progress></dl></menuitem>
<var id="lf1hj"><strike id="lf1hj"><listing id="lf1hj"></listing></strike></var>
<var id="lf1hj"></var><cite id="lf1hj"></cite>
Accelerating the speed of data insights

Creating Unique Suggestions for Every User

LIKE THIS STORY:
Rating Unavailable
LIKES SO FAR

Personalization is the holy grail of engagement. And it’s no wonder: Harvard Business Review reports that personalized user experience can deliver five to eight times the return on investment of marketing dollars and improve sales by 10% or more.

While personalized content builds deeper relationships and a better understanding of users, the mass of data required to create effective recommendations is daunting. Enter artificial intelligence (AI) engines with advanced data center infrastructures and high-performance memory and storage solutions.

These recommendation engines now dominate the online experience, and the biggest example is Amazon. According to a McKinsey report, over 35% of the retail giant’s sales come from recommendations. And these engines power more than shopping: Streaming sites display movies or shows users are likely to be interested in, job searches display opportunities users are qualified for, and news and social feeds are populated with relevant content.

For streaming, three out of four Netflix® users choose movies suggested by its recommendation engine, and 80% of Netflix’s overall stream time is driven from these suggestions. Services like Hulu™ have added “like” and “dislike” functions to give users more control over what recommendations they see.

Behind the scenes, data centers are creating this highly personalized internet. The algorithms are so sophisticated that recommendations have become the user experience. And like so many other advanced technologies, recommendation engines would not exist without memory and storage solutions like those that Micron produces.

What is a recommendation engine?

Simply put, recommendation engines are systems that suggest information based on the rating or preference a user would likely give an item.

It’s all about the data. For recommendation engines, the more data, the more accurate the results. When a suggestion is given, it’s been filtered in one of the following ways:

  • Generic: The simplest filter identifies items that are similar to what a user searched for or what is most popular.
  • Content: This filter examines user history, identifies keywords describing the choices, and makes suggestions of similar content.
  • Collaborative: Based on history, a user is assigned to a group. The items liked by other members of the group are presented.
  • Ensemble: This approach uses a combination of multiple filters.

Each of these filters is increasingly complex. The ensemble approach is the most accurate, requires the most data, and is the most difficult to execute.

In the case of a streaming media, to make accurate recommendations, the engine requires data on a film’s genre, the synopsis, the actors and directors, the user’s movie-watching history — and all this same data on a huge pool of people with similar watching habits. It then layers on reviews, social comments and even language from the screenplay. It’s a lot of data, and a massive amount of memory and storage is required to handle these workloads.

How do memory and storage technologies like Micron’s fuel recommendation engines?

2. Filtering and preprocessing
The machine learning system holds millions of customers’ history and actions, with the system constantly updating. This data is often captured in an unstructured form. Before the data can be useful, it must first be filtered and distilled to the key information and organized in an efficient way. Imagine that finding the data point you need in unstructured data is like searching for Waldo in the popular “Where’s Waldo?” children’s books, only the crowds of people in silly circumstances are moving. Poor Waldo may never be found. Now imagine that all the people surrounding Waldo are standing still and organized into a grid pattern. Finding Waldo would be easier (though arguably less fun). Filtering and preprocessing data is essentially organizing the chaos of a moving crowd into orderly lines and grids. Organizing data is a problem best solved by CPUs and supported by server DRAM, such as DDR5, which temporarily holds the data being preprocessed and feeds it rapidly to the processor. Fast NVMe™ SSDs store the data once it is processed and becomes structured; it will then be used for AI training.

3. Training
Here AI teaches the engine to recognize content. For example, a system might analyze billions of images until it learns how to recognize a dog. This requires passing pieces of data hundreds — or thousands — of times through the training system. And the model is retrained with updated databases on a regular basis, as new data flows in and users interact. This process requires extremely powerful, flexible data centers to run complex training algorithms. Forms of high-bandwidth memory, such as Micron’s family of Ultra-Bandwidth Solutions, feed data over and over again at super-high speeds to the graphics processing unit (GPU) or CPU, which makes the logical connections to create the AI algorithm. The demand for more memory in the training process continues to grow as the amount of data grows and the AI algorithms get more complex. But it’s not just more memory that’s required. It’s new memory that will bring about smarter and faster AI — new memory that moves 2 bits of information down each wire rather than 1, for example, or memory that is stacked 3D and moved so close to the processing unit that it’s in the same chip package. Micron is at the forefront of trailblazing new memory innovations.

4. Recommendation
Next is inference, when a trained system is asked whether a movie has a dog in it. Once it recognizes a dog, it can make a recommendation. This may be done millions of times a minute by different users and can happen in the data center or close to the end users, sometimes right on their phones or laptops. High-performance memory ensures that recommendations are made quickly enough to be meaningful to the user and profitable for the provider.

5. Optimization
User interactions with recommendations are fed back into the data collection phase to continually optimize future recommendations, enabling the engines to learn and become more accurate.

Memory and storage play a role in each phase of the recommendation engine process by reducing the time it takes to retrieve and move data, by keeping the processing units satiated with the data they need and by storing the vast and growing ocean of data created each day. Without products like those that Micron manufactures, creating recommendation engines would be impossible.

What is the future of recommendation engines?

Recommendation engines have changed the user experience — and business model — of online services. It makes sense, then, that sites are looking for new ways to employ recommendations on their platforms.

For instance, Ben Allison, Amazon machine learning scientist, notes that past user events are not of equal importance. Understanding that customer behavior is incredibly complex, Amazon now tasks neural networks to discern the importance of a past behavior (based on context and time) and give it an “attention score.” These attention scores become a key part of a more sophisticated recommendation algorithm.

In addition, Amazon has learned that “predictable” forecasts are not really ideal. By adding in some “randomness”, they have been able to replicate the “serendipitous discovery” that all shoppers want. So today, Amazon’s recommendations are derived more from AI “decision-making,” not just vanilla prediction.

Some sites are having human editors interact in real time with recommendation engines to make algorithms even more accurate. At Hulu, for instance, “a team of content experts will work more closely together, creating additional curated collections that are more personalized for viewers.”

And Netflix is using recommendation algorithms to define its catalog of movies and TV shows by learning characteristics that make content successful: “We use it to optimize the production of original movies and TV shows in Netflix’s rapidly growing studio. It also powers our advertising spend, channel mix, and advertising creative so that we can find new members who will enjoy Netflix.”

For current and future recommendation functionality, maximum data volume and maximum speed are critical. The data storage, AI training and inference of recommendation engines require both high-performance and low-power memory and storage.

Micron’s broad portfolio of solutions spans the recommendation engine requirements — from high-bandwidth memory and accelerators for intensive training to standard memory for inference and to high-capacity storage for a variety of data. Chances are good that, if a shopper is recommended the perfect Christmas gift or a viewer the perfect show to watch, Micron memory and storage were involved in that recommendation along the way.

Download the Infographic

Learn more about Micron products that make recommendation engines possible.

Micron is a registered trademark of Micron Technology, Inc. All other trademarks and registered trademarks referenced in this article are the property of their respective owners and are included for reference only. Inclusion of other trademarks, registered trademarks, or brands does not constitute an endorsement or promotion by Micron or signify a business relationship though one may exist.

+
+
彩神ll 彩神ll
我吃西红柿 大主宰 天蚕土豆 小说 小说阅读网 重生之毒妃 梅果 小说 风凌天下 有声 豆豆小说阅读网 好看的小说 君子以泽 玄幻小说排行榜 唐家三少 好看的言情小说 怎么写网络小说 手机推荐排行榜 盗墓笔记小说下载 女强穿越玄幻完结小说 雪鹰领主 盗墓笔记小说下载 女强穿越玄幻完结小说 管理书籍排行榜 小说网 最好看的小说排行 欢乐颂第一季免费阅读 完美世界有声小说全集 好看的言情小说 古风 完美世界小说txt下载 旷世神医 管理书籍排行榜 网络小说排行榜 古风 耳根 网络小说排行榜 有声小说下载 武道至尊 帝临 小说 怎样写网络小说 兽性总裁的爱奴 完美世界官网 我欲封天txt下载 网络小说排行榜 小说阅读网免费小说 《完美世界》txt全集 武道至尊 帝临 小说 完美世界txt全集下载 言情小说 君子以泽 古风小说 完美世界前传下载 玄幻小说排行榜 怎样写网络小说 神武八荒 一颗 小说 我欲封天txt下载 我欲封天 耳根 小说零 完美世界txt全集下载 已完结小说排行榜 耳根 小说网 怎样写网络小说 手机推荐排行榜 武道至尊 帝临 小说 有声 好看的电视剧 小说改编的网页游戏 欢乐颂第一季免费阅读 殿上欢 欢乐颂第一季免费阅读 完美世界有声小说全集 魔天记 忘语 小说 我欲封天txt下载 大主宰之灵路天蚕土豆 天下 高月 小说 小说排行榜 完美世界小说txt下载 琅琊榜 海宴 小说 欢乐颂第三季 玄幻小说完本 魔天记 忘语 小说 已完本玄幻小说排行榜 如何发布网络小说 好看的言情小说 魔天记 忘语 小说 有声小说在线收听网 欢乐颂小说 完美世界前传下载 欢乐颂小说结局是什么 辰东完美世界有声小说 如何发布网络小说 盗墓笔记第二季 管理书籍排行榜 完美世界有声小说 雪鹰领主 魔天记 忘语 小说 盗墓笔记全集 盗墓笔记同人小说 盛世嫡妃 凤轻 小说 我欲封天 耳根 小说 小说阅读网站 绝色狂妃 仙魅 小说 小说阅读网 女强穿越玄幻完结小说 好看的小说 君子以泽 如何发布网络小说 雪鹰领主 雪鹰领主 盗墓笔记小说txt下载 小说排行榜完结版 女人书籍排行榜 豆豆小说阅读网 完美世界辰东小说下载 小说阅读网 小说改编的网页游戏 已完本玄幻小说排行榜 有声小说下载 有声小说打包下载 完美世界有声小说 有声 欢乐颂小说结局是什么 雪鹰领主 有声小说在线收听网 手机推荐排行榜 欢乐颂第三季 大主宰 好看的历史书籍推荐 完美世界有声小说全集 小说改编的网页游戏 完美世界小说txt下载 大主宰 天蚕土豆 官场小说排行榜 好看的小说完本推荐 欢乐颂第三季 有声小说打包下载 小说阅读网 好看的电视剧 小说阅读网 玄幻小说完本 欢乐颂 小说阅读器 完美世界有声小说全集 择天记 将夜 猫腻 小说 将夜 猫腻 小说 盗墓笔记第二季 完美世界有声小说 手机推荐排行榜 完美世界辰东 斗破苍穹续集 好看的电视剧 盗墓笔记同人小说 如何发布网络小说 风凌天下 好看的玄幻小说 古风名字 小说阅读网 小说排行榜完结版 网络小说排行榜 风凌天下 如何发布网络小说 豆豆小说阅读网 好看的历史书籍推荐 遮天 辰东 小说笔趣阁 大主宰 天蚕土豆 小说 完美世界辰东小说下载 我欲封天 耳根 小说 小说阅读网 已完本玄幻小说排行榜 雪鹰领主 遮天 欢乐颂第二季 欢乐颂小说结局是什么 有声读物 玄幻小说排行榜 盗墓笔记 有声小说下载 好看的小说 完美世界有声小说全集 有声读物 古风小说 古风小说 辰东 欢乐颂第三季 欢乐颂小说结局是什么 有声小说 最好看的小说排行 耳根 将夜 猫腻 小说 盛世嫡妃 凤轻 小说 最好看的小说排行 小说阅读网 盗墓笔记 好看的电视剧 好看的玄幻小说 最好看的小说排行 玄幻小说排行榜完本 好看的玄幻小说 盗墓笔记txt全集下载 欢乐颂第一季免费阅读 遮天 辰东 小说笔趣阁 好看的小说 有声读物 好看的电视剧 完美世界txt全集下载 梦入神机 玄幻小说完本 君子以泽 兽性总裁的爱奴 穿越小说排行榜 有声 yy玄幻小说排行榜完本 欢乐颂小说在线阅读 大主宰txt全集下载 辰东完美世界有声小说 神武八荒 一颗 小说 绝色狂妃 仙魅 小说 好看的言情小说 完结小说 穿越小说排行榜 将夜 猫腻 小说 性爱有声小说在线收听 玄幻小说改编的电视剧 完美世界辰东小说下载 玄幻小说排行榜完本 欢乐颂小说在线阅读 小说阅读网站 yy玄幻小说排行榜完本 武道至尊 帝临 小说 欢乐颂第三季 完美世界辰东小说下载 小说阅读网 小说阅读网免费小说 盗墓笔记同人小说 有声小说 小说 怎么写网络小说 欢乐颂第二季 玄幻小说改编的电视剧 玄幻小说排行榜 大主宰 玄幻小说排行榜 唐家三少 小说阅读网免费小说 完美世界前传下载 大主宰 小说阅读网站 欢乐颂小说结局是什么 盛世嫡妃 凤轻 小说 小说改编的网页游戏 小说阅读网站 殿上欢 风凌天下 古风名字 小说 完美的世界 1993 电影 我欲封天txt下载 穿越小说排行榜 我欲封天 耳根 小说零 天蚕土豆 盗墓笔记小说下载 殿上欢 穿越小说完本 大主宰之灵路天蚕土豆 小说阅读网 完美世界有声小说 手机推荐排行榜 完美世界辰东 好看的课外书 女强穿越玄幻完结小说 天蚕土豆 盗墓笔记txt全集下载 耳根 女人书籍排行榜 完美世界辰东小说下载 盗墓笔记txt全集下载 辰东全部小说 将夜 猫腻 小说 梦入神机 长生界 辰东 小说 最好看的小说排行 完美世界小说下载 小说阅读网免费小说 古风 古风小说 君子以泽 绝色狂妃 仙魅 小说 国际完美世界下载 灵域 小说阅读网免费小说 武道至尊 帝临 小说 怎么写网络小说 盗墓笔记同人小说 懒人听书 武道至尊 帝临 小说 欢乐颂小说 官场小说排行榜 我欲封天txt下载 小说排行榜完结版 怎么写网络小说 盛世嫡妃 凤轻 小说 性爱有声小说在线收听 小说阅读网站 国际完美世界下载 有声读物 重生之毒妃 梅果 小说 盗墓笔记小说全集 完美世界辰东 大主宰之灵路天蚕土豆 盗墓笔记txt全集下载 小说阅读器 盗墓笔记全集 性爱有声小说在线收听 完美世界辰东小说下载 玄幻小说排行榜完本 欢乐颂小说结局是什么 欢乐颂第二季 武道至尊 帝临 小说 欢乐颂小说结局是什么 我欲封天 怎么写网络小说 有声小说打包下载 小说网 完结小说排行榜 玄幻小说改编的电视剧 盗墓笔记txt全集下载 天域苍穹 神武八荒 一颗 小说 完美世界有声小说 将夜 猫腻 小说 盗墓笔记小说txt下载 懒人听书 欢乐颂第三季 完美世界txt下载 如何发布网络小说 完美世界官网 小说排行榜完结版 古风名字 重生之毒妃 梅果 小说 小说阅读网站 完美世界有声小说 完美世界小说下载 好看的小说 君子以泽 好看的电视剧 魔天记 忘语 小说 兽性总裁的爱奴 完美世界txt下载 欢乐颂 玄幻小说改编的电视剧 大主宰之灵路天蚕土豆 盗墓笔记txt全集下载 玄幻小说完本 玄幻小说排行榜完本 豆豆小说阅读网 古风小说 天蚕土豆 小说 耳根 古风名字 斗破苍穹续集 好看的小说完本推荐 小说排行榜 欢乐颂第三季 小说阅读网 管理书籍排行榜 新寡妇村传奇 兽性总裁的爱奴 梦入神机 古风小说 重生之毒妃 梅果 小说 小说网 yy玄幻小说排行榜完本 完美世界官网 雪鹰领主 耳根 完美的世界 1993 电影 辰东完美世界有声小说 武道至尊 帝临 小说 完美世界txt全集下载 欢乐颂小说结局是什么 小说阅读网免费小说 懒人听书 好看的言情小说 《完美世界》txt全集 完美世界有声小说 大主宰 兽性总裁的爱奴 辰东 旷世神医 殿上欢 完美世界官网 古风小说 君子以泽 好看的课外书 好看的言情小说 魔天记 忘语 小说 穿越小说完本 辰东完美世界有声小说 言情小说 君子以泽 穿越小说排行榜 有声 完结小说 新寡妇村传奇 豆豆小说阅读网 琅琊榜 海宴 小说 欢乐颂第一季 小说阅读网站 完美世界辰东 完美世界国际版下载 小说阅读网站 小说网 雪鹰领主 斗破苍穹续集 天下 高月 小说 有声读物 辰东全部小说 欢乐颂 好看的电视剧 小说网 穿越小说排行榜 欢乐颂小说txt 女强穿越玄幻完结小说 我欲封天txt下载 盗墓笔记同人小说 盗墓笔记 有声读物 yy玄幻小说排行榜完本 我欲封天 耳根 小说 有声读物 盗墓笔记小说下载 完美世界辰东 长生界 辰东 小说 怎样写网络小说 有声读物 斗破苍穹续集 yy玄幻小说排行榜完本 欢乐颂小说结局是什么 辰东 我欲封天txt下载 重生之毒妃 梅果 小说 完美世界 辰东 小说 欢乐颂小说结局 雪鹰领主 完美世界小说下载 欢乐颂第一季 盗墓笔记 古风名字 女强穿越玄幻完结小说 完美世界小说下载 兽性总裁的爱奴 玄幻小说完本 小说排行榜完结版 小说阅读网 小说阅读网免费小说 唐家三少 神武八荒 一颗 小说 武道至尊 帝临 小说 有声小说下载 玄幻小说改编的电视剧 手机推荐排行榜 我欲封天 耳根 小说 古风 盗墓笔记第二季 我欲封天 耳根 小说 风凌天下 盛世嫡妃 凤轻 小说 豆豆小说阅读网 完结小说 豆豆小说阅读网 古风君子以泽 穿越小说完本 完美世界小说下载 古风小说 君子以泽 女强穿越玄幻完结小说 盗墓笔记全集 盗墓笔记txt全集下载 我欲封天txt下载 大主宰txt全集下载 盗墓笔记小说txt下载 盗墓笔记txt全集下载 欢乐颂第一季 怎么写网络小说 我欲封天 雪鹰领主 欢乐颂第一季 手机推荐排行榜 已完结小说排行榜 好看的电视剧 好看的小说完本推荐 盗墓笔记小说下载 欢乐颂第二季 怎么写网络小说 盗墓笔记小说txt下载 已完本玄幻小说排行榜 大主宰txt全集下载 重生之毒妃 梅果 小说 大主宰 天蚕土豆 小说 怎么写网络小说 小说阅读网免费小说 欢乐颂小说结局是什么 欢乐颂小说结局是什么 古风 完美世界txt全集下载 辰东 琅琊榜 海宴 小说 梦入神机 完美世界txt下载 天域苍穹